Determination of Decarburization Depth Base on Deep Learning Methods
نویسندگان
چکیده
In the heat treatment of steel, decarburization is a serious issue that leads to poor wear resistance and low fatigue life. At present, depth was determined using visual estimation by human eye, software through traditional image analysis. Therefore, analysis remains limited in experts algorithms. Artificial intelligence general-purpose technology has multitude applications. This paper uses concept deep learning propose layer detector (DLD) can determine decarburized layers. DLD system boasts high performance, real-time, learning, computation costs. addition, we used several kinds layers images compare proposed method with other network architectures. The experimental results show yields detection accuracy 92.97%, which higher than existing methods computational demands are far lower novel for automatic determination as an application metallographic
منابع مشابه
on the comparison of keyword and semantic-context methods of learning new vocabulary meaning
the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...
15 صفحه اولthe effects of error correction methods on pronunciation accuracy
هدف از انجام این تحقیق مشخص کردن موثرترین متد اصلاح خطا بر روی دقت آهنگ و تاکید تلفظ کلمه در زبان انگلیسی بود. این تحقیق با پیاده کردن چهار متد ارائه اصلاح خطا در چهار گروه، سه گروه آزمایشی و یک گروه تحت کنترل، انجام شد که گروه های فوق الذکر شامل دانشجویان سطح بالای متوسط کتاب اول passages بودند. گروه اول شامل 15، دوم 14، سوم 15 و آخرین 16 دانشجو بودند. دوره مربوطه به مدت 10 هفته ادامه یافت و د...
15 صفحه اولthe effect of explicit teaching of metacognitive vocabulary learning strategies on recall and retention of idioms
چکیده ندارد.
15 صفحه اولOn optimization methods for deep learning
The predominant methodology in training deep learning advocates the use of stochastic gradient descent methods (SGDs). Despite its ease of implementation, SGDs are difficult to tune and parallelize. These problems make it challenging to develop, debug and scale up deep learning algorithms with SGDs. In this paper, we show that more sophisticated off-the-shelf optimization methods such as Limite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metals
سال: 2023
ISSN: ['2075-4701']
DOI: https://doi.org/10.3390/met13030479